

Department: Mechanical Engineering

A.Y. 2023-24

Date:

Course Outline

Class: TY B Tech	Name of the Course: Mechatronics			
Course Type: PCC	Course code: BME6414			
	Examination Structure			
Credits: 03	IE	MTE	ETE	Total
	20	30	50	100

Course Relevance: Mechatronics is an interdisciplinary branch of engineering that focuses on the integration of mechanical, electronic and electrical engineering systems, and also includes a combination of robotics, electronics, computerscience, telecommunications, systems, control, and product engineering.

Pre requisites:

- a. Applied Mathematics
- b. Metrology and Mechanical Measurement

Course Outcome and Mapping with POs and PSOs

со	Statement	Learning	PO/ PSO	Tools for direct
		Level	Mapped	Assessment
1		SELECT		IE, MIE, EIE
	SELECT appropriate electrical actuator		PO1	
	for any mechatronics system.			
2	UTILIZE the concept of DAQ and signal	UTILIZE		IE, MTE, ETE
	processing to interface any sensor to acquire the		PO1, PO5,	
	data.		PO12, PSO1	
3	DETERMINE the transfer function and PREDICT	DETERMI		IE MTE ETE
_	the stability of the mechanical system.	NE and	PO1, PO2,	12, 1112, 212
		PREDICT	PSO1	
4	IDENTIFY and APPLY the basics fluid power	IDENTIFY,		IE, ETE
	components to CREATE the hydraulic /pneumatic	APPLY and	PO1, PO12,	
	circuits.	CREATE	PSO1	
5	DESIGN and DEVELOP a ladder programming	DESIGN	PO1, PO2,	IE, ETE
	for mechanical applications.	and	PO3, PO5,	
		DEVELOP	PO12, PSO1,	
			PSO2	
6	DESIGN and ANALYSE the PID controller for	DESIGN	PO1, PO2,	IE, ETE
	mechanical system.	and	PO3, PO12,	
		ANALYSE	PSO1, PSO2	

Internal Evaluation-1 will be based on Case study using Modern Software Tools.

Internal Evaluation-2 will be the based on prepare the digital poster which can be demonstrating and highlighting the technology in the field of mechatronics field.

Department: Mechanical Engineering

A.Y. 2023-24

Semester:II

Date:

Rubrics for IE1

	Excellent (2 marks)	Good (1 marks)	Poor (0 marks)
 Understanding of Engineering Concepts: Demonstrates a clear understanding of relevant engineering principles and concepts. Applies appropriate engineering theories and methodologies Problem Identification 			
 Solution Development: Analyzes and interprets results to support conclusions and recommendations. Displays logical and systematic thinking throughout the case study. 			
 Technical Knowledge and Application: Applies technical knowledge effectively to propose engineering solutions. Demonstrates an understanding of relevant engineering tools, software, or techniques. 			
 Time Management: Adherence to the allocated time frame Ability to summarize and prioritize key points within the given time Efficient use of time for each section or topic covered 			
 Teamwork and Professionalism: Responding to questions effectively Overall professionalism and preparedness 			

Rubrics for IE2

	Excellent (2 marks)	Good (1 marks)	Poor (0 marks)
 Content: Accuracy: The information presented on the poster is accurate, reliable, and supported by credible sources. Relevance: The content is directly related to safety, health, and environmental topics. Completeness: The poster covers all the essential aspects of the chosen topic. Depth: The content demonstrates a thorough understanding of the 	(2 marks)	(1 marks)	(U marks)
subject matter.			
 Visual Design: Organization: The poster is well-organized, with a clear and logical flow of information. Visual Appeal: The overall design is visually appealing, using appropriate colors, fonts, and images. 			

Nigdi, Pune – 411 044

Department: Mechanical Engineering A.Y

A.Y. 2023-24

Semester:II

Date:

• Graphics and Images: Relevant graphics, images, and diagrams are used effectively to enhance understanding.		
Communication: • Clarity: The message of the poster is clear and easily		
understandable.		
• Conciseness: The content is concise and avoids unnecessary jargon or technical language.		
Communication of Key Points: The poster effectively communicates		
the main points and takeaways.		
Creativity and Innovation:		
• Demonstrates: The poster demonstrates contemporary ideas		
• Innovative Solutions: The poster presents creative and innovative		
solutions to safety, health, and environmental challenges.		
• Engagement: The poster captures and maintains the viewer's		
attention through creative elements.		
Time Management:		
Adherence to the allocated time frame		

Teaching Plan for Theory Sessions

Marks distribution

CO/PO	PO1	PO2	PO3	PO5	PO12	PSO1	PSO2	
1	7							7
2	4			1	2	1		8
3	4	3				1		8
4	4				2	1		7
5	3	1	1	1	1	0.5	0.5	8
6	2	1	1		1	1	1	7
	24	5	2	2	6	4.5	1.5	45

СО	IE1	IE2	MTE	ETE
Out of	10	10	50	80
Converted to	10	10	30	50
1	-	5	-	20
2	-	5	-	20
3	5	-	10	5
4	5	-	10	5
5	-	-	-	25
6	-	-	15	10

Course Faculty TY A	Course Faculty TY B	Course Faculty TY C
V.K. Aher	Dr. R.A. Gujar	Dr. R. Bhosale

Course Coordinator: V.K. Aher